Physical and Chemical Kinetics Final Examination 04-12-2013

Please use the provided paper sheets to write down the solutions of the problems. Write your name and student ID number on a first page and enumerate all subsequent pages. Do not forget to hand in your paperwork after the examination.

Problem 1

Hydrogen atom interacts with argon atom which is at rest in the laboratory frame of reference. The velocity of the hydrogen atom has (x, y, z) components of $(1 \times 10^3 \text{ m/s}, 0, 0)$. Molecular weights of hydrogen and argon are 2 g/mol and 40 g/mol, respectively.

- a. Find the velocities of the atoms in the center-of-mass frame of reference.
- b. Find the kinetic energy of relative movement of the atoms.
- c. Find the total angular momentum of atoms relative to the origin of the center-of-mass frame of reference when distance between atoms $\mathbf{r} = (1 \text{ cm}, 1 \text{ cm}, 0)$.

Problem 2

Interaction of particles is described by an attractive square-well potential with depth ϵ at a distance d between particles (see fig.). The relative velocity of the particles before collision is v, impact parameter is b and their relative mass is μ .

- a. What is magnitude of the relative velocity after collision?
- b. Sketch the trajectory of the particle moving in a field with this potential.
- c. Find the distance of the closest approach between the particles as a function of v, b, μ , ϵ , and d.

Problem 3

Consider hydrogen cyanide HCN at temperature $T=300\,\mathrm{K}$. Molecular weight of HCN is $27\,\mathrm{g/mol}$.

- a. Find the magnitude of the average velocity of HCN molecules at this temperature.
- b. How many times faster or slower will be mixing HCN with air after increasing the temperature 2 times?
- c. Find the sound velocity in HCN gas at $T=300\,\mathrm{K}$.

Problem 4

Formation of the nitrogen oxide proceeds in the flame front through the so-called "prompt" mechanism:

$$CH + N_2 \xrightarrow{k_1} HCN + N$$

$$N + O_2 \xrightarrow{k_2} NO + O$$

$$HCN + O_2 \xrightarrow{k_3} NO + CHO$$

- a. Assuming that rate coefficients k_2 and k_3 are much larger than k_1 , derive the expression for the rate of formation of the nitric oxide.
- b. Where is a higher concentration of CH molecules expected: in mixtures with excess of oxidizer or mixtures with excess of fuel?
- c. Find the mole fraction of NO molecules in the combustion products after their passing the flame front. The combustion gases can be treated as air at temperature 2000 K and pressure $10 \, \text{atm} \approx 1 \times 10^6 \, \text{Pa}$. The residence time of combustion products in the flame front is $\sim 1 \, \text{ms}$. The rate coefficient $k_1 = 3.0 \times 10^{12} T^{0.88} e^{-10130/T} \, \text{cm}^3/\text{mol} \, \text{s}$ and the concentration of CH molecules in the flame front is $10 \, \text{ppm}$.